Introduction to Set theory: Difference between revisions

 
(One intermediate revision by the same user not shown)
Line 41: Line 41:
* [[Infinite Set]] – Has uncountably many elements.
* [[Infinite Set]] – Has uncountably many elements.
   * Example: <math>\{1, 2, 3, 4, \ldots\}</math>
   * Example: <math>\{1, 2, 3, 4, \ldots\}</math>
* '''Empty Set''' ('''Null Set''') – A set with no elements.
* [[Empty Set]] ('''Null Set''') – A set with no elements.
   * Notation: <math>\emptyset</math> or <math>\{\}</math>
   * Notation: <math>\emptyset</math> or <math>\{\}</math>
* '''Singleton Set''' – A set with only one element.
* [[Singleton Set]] – A set with only one element.
   * Example: <math>\{7\}</math>
   * Example: <math>\{7\}</math>
* '''Equal Sets''' – Two sets with exactly the same elements.
* [[Equal Sets]] – Two sets with exactly the same elements.
   * Example: <math>A = \{1, 2, 3\}, B = \{3, 2, 1\} \Rightarrow A = B</math>
   * Example: <math>A = \{1, 2, 3\}, B = \{3, 2, 1\} \Rightarrow A = B</math>